Best Practices Tool 1: Observations and Questioning

What are students noticing?

*WHY, HOW: Qualifier or Explanatory Questions How is it affected by...? Why does it...?

*SYSTEM: Parts of a Larger Whole Questions Where does...the energy in the system go? How does...the system remain stable? Why does...the system change over time?

** Grouping questions can be done during class or after class by the educator in preparation for the next day

Prompting Notes

If the content you are teaching is not interesting to you, it will not be interesting to the students. You must put the information into a context that is interesting, so students understand why they are learning it, and will want to learn it. Begin with a phenomenon where students can notice things happening and wonder about them.

Guiding Discussion Lessons/Questions

1. An easy and consistent 2-step move you can do in any lesson is to start with an observation of a phenomenon and then ask students what they **Notice and Wonder** about that phenomenon. Talk with your colleagues about lesson examples you currently teach that could be adapted to include these 2 steps.

Use this space to workshop an existing lesson to incorporate "Noticings" and "Wonderings."

Additional Resources:

<u>The Driving Question Board. A Visual Organizer for Project Based Science</u>. November 2008. By Ayelet Weizman, Yael Schwartz, David Fortus.

Scientific and Engineering Practices in K-12 Classrooms. Understanding A Framework or K-12 Science Education. NSTA Science Scope. December 2011. By Roger Bybee.